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Abstract.–The development of the trigonometric functions in introductory 
texts usually follows geometric constructions using right triangles or the unit 
circle. While these methods are satisfactory at the elementary level, advanced 
mathematics demands a more rigorous approach. Our purpose here is to revisit 
elementary trigonometry from an entirely analytic perspective.  We will give a 
comprehensive treatment of the sine and cosine functions and will show how to 
derive the familiar theorems of trigonometry without reference to geometric 
definitions or constructions. 
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Our purpose in this paper is to show how the definitions and 
theorems of elementary trigonometry can be developed without 
references to geometric constructions.  We will use methods from real 
analysis to provide an alternate view of the sine and cosine functions.  
Along the way we will see a relationship that leads to a non-geometric 
construction of pi. Finally, we will make connections with the familiar 
geometric approach.   For this study, we will assume a familiarity with 
calculus, differential equations, and real analysis.  Since simple 
harmonic motion (SHM) of an oscillator follows a sinusoidal pattern, 
we will use the differential equation for SHM as the basis for our 
development of the sine and cosine functions. 

Definitions and basic properties.–We begin by considering the 
solution of the second-order homogeneous linear differential equation 

𝑓𝑓′′(x) + 𝑓𝑓(x) = 0 with 𝑓𝑓(x) = 0 and 𝑓𝑓′(x) = 1. 

By the Existence and Uniqueness Theorem we know that a unique 
solution exists (Nagle et al. 2008). If this solution has a power series 
representation around the ordinary point x = 0, it must have the form 
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𝑓𝑓(x) = �𝑐𝑐𝑛𝑛𝑥𝑥𝑛𝑛
∞

𝑛𝑛=0

 

Note that 𝑓𝑓(0) = 𝑐𝑐0 = 0 and 𝑓𝑓′(0) = 𝑐𝑐1 = 1.  We also have 

𝑓𝑓′′(𝑥𝑥) = �(𝑛𝑛)(𝑛𝑛 − 1)𝑐𝑐𝑛𝑛𝑥𝑥𝑛𝑛−2
∞

𝑛𝑛=0

= �(𝑛𝑛 + 2)(𝑛𝑛 + 1)𝑐𝑐𝑛𝑛+2𝑥𝑥𝑛𝑛
∞

𝑛𝑛=0

 

then 
 

�(𝑛𝑛 + 2)(𝑛𝑛+ 1)𝑐𝑐𝑛𝑛+2𝑥𝑥𝑛𝑛 +
∞

𝑛𝑛=0

�𝑐𝑐𝑛𝑛𝑥𝑥𝑛𝑛 =
∞

𝑛𝑛=0

�((𝑛𝑛 + 2)(𝑛𝑛+ 1)𝑐𝑐𝑛𝑛+2 + 𝑐𝑐𝑛𝑛)𝑥𝑥𝑛𝑛 =
∞

𝑛𝑛=0

0 

Since this power series is 0 for all x, we get the general recursion 
relation 

(𝑛𝑛 + 2)(𝑛𝑛 + 1)𝑐𝑐𝑛𝑛+2 + 𝑐𝑐𝑛𝑛 = 0 
so that 

𝑐𝑐𝑛𝑛+2 = −
𝑐𝑐𝑛𝑛

(𝑛𝑛 + 2)(𝑛𝑛 − 1) 

because  𝑐𝑐0 = 0, we have for all even indices 2n 

𝑐𝑐2𝑛𝑛 = 0 

Let us now examine the coefficients with odd indices 2n + 1. 
 

𝑐𝑐1 = 1      initial condition 

𝑐𝑐3 = −
1

3 ⋅ 2
= −

1
3!

 

𝑐𝑐5 = −
− 1

3!
5 ⋅ 4

=
1
5!

 

𝑐𝑐7 = −
1
5!

7 ⋅ 6
= −

1
7!

  
 
and in general, 
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𝑐𝑐2𝑛𝑛+1 = (−1)𝑛𝑛
1

(2𝑛𝑛 + 1)!
  

The power series about x = 0 must have the form 

�(−1)𝑛𝑛
𝑥𝑥2𝑛𝑛+1

(2𝑛𝑛 + 1)!

∞

𝑛𝑛=0

   

Using the Ratio Test, it is easy to show that this series converges for 
all real x.  The function represented by this power series is the unique 
solution of the differential equation 

𝑓𝑓′′(x) + 𝑓𝑓(x) = 0 with 𝑓𝑓(0) = 0 and 𝑓𝑓′(0) = 1. 
 
We call this function the sine function, denoted sin x, or sin(x). 
 
Definition Sine Function 

sin 𝑥𝑥 =�(−1)𝑛𝑛
𝑥𝑥2𝑛𝑛+1

(2𝑛𝑛 + 1)!

∞

𝑛𝑛=0

 

We define the cosine to be the derivative of the sine function. 

Definition Cosine Function 

cos𝑥𝑥 =
𝑑𝑑
𝑑𝑑𝑥𝑥

�(−1)𝑛𝑛
𝑥𝑥2𝑛𝑛+1

(2𝑛𝑛 + 1)!

∞

𝑛𝑛=0

= �(−1)𝑛𝑛
𝑥𝑥2𝑛𝑛

(2𝑛𝑛)!

∞

𝑛𝑛=0

 

The following are elementary consequences of the definitions: 
1. 𝑠𝑠𝑠𝑠𝑛𝑛(0) = 0 
2. 𝑐𝑐𝑐𝑐𝑠𝑠(0) = 1 
3. The function sin(𝑥𝑥) is odd because all exponents in its power series 
are odd. 
4. The function cos(𝑥𝑥) is even because all exponents in its power 
series are even. 
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5. The functions sin(𝑥𝑥) and cos(x) are both continuous since they are 
differentiable. 
6. The derivatives of sin(𝑥𝑥) are cyclic with order four. 

 

 

 

Key theorems.–This section presents the Pythagorean and Sine 
Sum identities which, along with the smallest positive critical value of 
sin x, enable the development of several important identities and 
analytic results in elementary trigonometry. 

First, we prove the Pythagorean Identity.  

Theorem Pythagorean Identity For all x, 

sin2 𝑥𝑥 + cos2𝑥𝑥 = 1 

Proof: Consider the derivative of the left side. 
𝑑𝑑
𝑑𝑑𝑥𝑥
�sin2(𝑥𝑥) + cos2(𝑥𝑥)� = 2 sin(𝑥𝑥) cos(𝑥𝑥) + 2 cos(𝑥𝑥) (− sin(𝑥𝑥)) = 0 

 

Since the derivative is 0, sin2 𝑥𝑥 + cos2𝑥𝑥 is a constant. 

Because 𝑠𝑠𝑠𝑠𝑛𝑛(0) = 0, and 𝑐𝑐𝑐𝑐𝑠𝑠(0) = 1, this constant must be 1.              

Next, we consider the identity for the sine of the sum of x and y. 
The proof in most elementary trigonometry texts involves a geometric 
construction with triangles or the unit circle. In our geometry-free 
approach, we will use only power series. 

Theorem Sine Sum Identity   For all x, y, 

sin(𝑥𝑥 + 𝑦𝑦) = sin(𝑥𝑥) cos(𝑦𝑦) + cos(𝑥𝑥) sin(𝑦𝑦) 

Proof: Consider the series expansion 

𝑓𝑓(x) 𝑓𝑓′(x) 𝑓𝑓′′(x) 𝑓𝑓′′′(x) 𝑓𝑓′′′′(x) 

𝑠𝑠𝑠𝑠𝑛𝑛(𝑥𝑥) 𝑐𝑐𝑐𝑐𝑠𝑠(𝑥𝑥) −𝑠𝑠𝑠𝑠𝑛𝑛(𝑥𝑥) −𝑐𝑐𝑐𝑐𝑠𝑠(𝑥𝑥)  𝑠𝑠𝑠𝑠𝑛𝑛(𝑥𝑥) 
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sin (𝑥𝑥 + 𝑦𝑦) = �(−1)𝑛𝑛
(𝑥𝑥 + 𝑦𝑦)2𝑛𝑛+1

(2𝑛𝑛 + 1)!

∞

𝑛𝑛=0

 

Now examine the general nth term an of this series using the Binomial 
Theorem: 

𝑎𝑎𝑛𝑛 = (−1)𝑛𝑛
(𝑥𝑥 + 𝑦𝑦)2𝑛𝑛+1

(2𝑛𝑛 + 1)!  

=
(−1)𝑛𝑛

(2𝑛𝑛 + 1)! (𝑥𝑥 + 𝑦𝑦)2𝑛𝑛+1 

=
(−1)𝑛𝑛

(2𝑛𝑛 + 1)! � �2𝑛𝑛 + 1
𝑠𝑠 � 𝑥𝑥2𝑛𝑛+1−𝑖𝑖𝑦𝑦𝑖𝑖

2𝑛𝑛+1

𝑖𝑖=0

 

=
(−1)𝑛𝑛

(2𝑛𝑛 + 1)!
�

(2𝑛𝑛 + 1)!
𝑠𝑠! (2𝑛𝑛 + 1 − 𝑠𝑠)!𝑥𝑥

2𝑛𝑛+1−𝑖𝑖𝑦𝑦𝑖𝑖
2𝑛𝑛+1

𝑖𝑖=0

 

= (−1)𝑛𝑛�
1

𝑠𝑠! (2𝑛𝑛 + 1 − 𝑠𝑠)!𝑥𝑥
2𝑛𝑛+1−𝑖𝑖𝑦𝑦𝑖𝑖

2𝑛𝑛+1

𝑖𝑖=0

 

This last sum has 2n + 2 terms. We will re-write it as two sums each 
having n + 1 terms. 

(−1)𝑛𝑛� 1
𝑖𝑖!(2𝑛𝑛+1−𝑖𝑖)!

𝑥𝑥2𝑛𝑛+1−𝑖𝑖𝑦𝑦𝑖𝑖
2𝑛𝑛+1

𝑖𝑖=0
  

= (−1)𝑛𝑛� 𝑥𝑥2𝑖𝑖+1𝑦𝑦2𝑛𝑛−2𝑖𝑖

(2𝑖𝑖+1)!(2𝑛𝑛−2𝑖𝑖)!

𝑛𝑛

𝑖𝑖=0
 +  (−1)𝑛𝑛� 𝑥𝑥2𝑛𝑛−2𝑖𝑖𝑦𝑦2𝑖𝑖+1

(2𝑛𝑛−2𝑖𝑖)!(2𝑖𝑖+1)!

𝑛𝑛

𝑖𝑖=0
  

    increasing odd powers of x              decreasing even powers of x 

= (−1)𝑛𝑛

(2𝑛𝑛+1)!
� (2𝑛𝑛+1)!𝑥𝑥2𝑖𝑖+1𝑦𝑦2𝑛𝑛−2𝑖𝑖

(2𝑖𝑖+1)!(2𝑛𝑛−2𝑖𝑖)!

𝑛𝑛

𝑖𝑖=0
 + (−1)𝑛𝑛

(2𝑛𝑛+1)!
� (2𝑛𝑛+1)!𝑥𝑥2𝑛𝑛−2𝑖𝑖𝑦𝑦2𝑖𝑖+1

(2𝑛𝑛−2𝑖𝑖)!(2𝑖𝑖+1)!

𝑛𝑛

𝑖𝑖=0
  

= (−1)𝑛𝑛

(2𝑛𝑛+1)!
� �2𝑛𝑛 + 1

2𝑠𝑠 + 1� 
𝑛𝑛

𝑖𝑖=0
𝑥𝑥2𝑖𝑖+1𝑦𝑦2𝑛𝑛−2𝑖𝑖 + (−1)𝑛𝑛

(2𝑛𝑛+1)!
� �2𝑛𝑛 + 1

2𝑠𝑠 + 1� 
𝑛𝑛

𝑖𝑖=0
𝑥𝑥2𝑛𝑛−2𝑖𝑖𝑦𝑦2𝑖𝑖+1  

                              
                             [1]                                               [2] 
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This last line represents the nth term of the expansion of sin(x + y). We 
now turn our attention to the right side 

sin(𝑥𝑥) cos(𝑦𝑦) + cos(𝑥𝑥) sin (𝑦𝑦) 

and consider the series expansion of the term sin x cos y. 

Since the series for sin x and for cos x both converge absolutely, we 
can write (sin x)(cos y) as the Cauchy product of the two series 

sin(𝑥𝑥) cos(𝑦𝑦) = �𝑐𝑐𝑛𝑛

∞

𝑛𝑛=0

 

where 

𝑐𝑐𝑛𝑛 = �𝑎𝑎𝑖𝑖𝑏𝑏𝑛𝑛−𝑖𝑖 , 𝑛𝑛 = 0,1,2,3, …
𝑛𝑛

𝑖𝑖=0

 

 

and the ai, bn−i terms come from the series for sin x and cos x, 
respectively (Rudin 1964). Let us examine the general term cn of this 
Cauchy product. 

𝑐𝑐𝑛𝑛 = �(−1)𝑖𝑖
𝑥𝑥2𝑖𝑖+1

(2𝑠𝑠 + 1)!

𝑛𝑛

𝑖𝑖=0

∙ (−1)𝑛𝑛−𝑖𝑖
𝑦𝑦2𝑛𝑛−2𝑖𝑖

(2𝑛𝑛 − 2𝑠𝑠)! 

        =  (−1)𝑛𝑛�
𝑥𝑥2𝑖𝑖+1𝑦𝑦2𝑛𝑛−2𝑖𝑖

(2𝑠𝑠 + 1)! (2𝑛𝑛 − 2𝑠𝑠)!

𝑛𝑛

𝑖𝑖=0

 

                      =
(−1)𝑛𝑛

(2𝑛𝑛 + 1)!
�

(2𝑛𝑛 + 1)!
(2𝑠𝑠 + 1)! (2𝑛𝑛 − 2𝑠𝑠)!𝑥𝑥

2𝑖𝑖+1𝑦𝑦2𝑛𝑛−2𝑖𝑖
𝑛𝑛

𝑖𝑖=0

 

=
(−1)𝑛𝑛

(2𝑛𝑛 + 1)!��2𝑛𝑛 + 1
2𝑠𝑠 + 1� 

𝑛𝑛

𝑖𝑖=0

𝑥𝑥2𝑖𝑖+1𝑦𝑦2𝑛𝑛−2𝑖𝑖
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Then the term cn is the odd powers of x in part [1] of the general 
binomial expansion above. By switching x with y in the previous 
equation, we get the general term dn for the Cauchy product of the 
series for sin y and cos x. 
 

                                 𝑑𝑑𝑛𝑛 =
(−1)𝑛𝑛

(2𝑛𝑛 + 1)!
�� 2𝑛𝑛 + 1

2𝑛𝑛 − 2𝑠𝑠� 
𝑛𝑛

𝑖𝑖=0

𝑦𝑦2𝑖𝑖+1𝑥𝑥2𝑛𝑛−2𝑖𝑖 

                                           

                                       =
(−1)𝑛𝑛

(2𝑛𝑛 + 1)!
��2𝑛𝑛 + 1

2𝑛𝑛 − 2𝑠𝑠� 
𝑛𝑛

𝑖𝑖=0

𝑥𝑥2𝑛𝑛−2𝑖𝑖𝑦𝑦2𝑖𝑖+1 

 

                                      =
(−1)𝑛𝑛

(2𝑛𝑛 + 1)!
��2𝑛𝑛 + 1

2𝑠𝑠 + 1� 
𝑛𝑛

𝑖𝑖=0

𝑥𝑥2𝑛𝑛−2𝑖𝑖𝑦𝑦2𝑖𝑖+1 

 
This matches the even powers of x in part [2] of the general binomial 
expansion.   
 
Therefore 
 

𝑎𝑎𝑛𝑛 = 𝑐𝑐𝑛𝑛 + 𝑑𝑑𝑛𝑛 
 
and 
 
                         sin(𝑥𝑥 + 𝑦𝑦) = sin(𝑥𝑥) cos(𝑦𝑦) + cos(𝑥𝑥) sin (𝑦𝑦)             
 
We now turn our attention to a special value, the smallest positive 
critical value of sin(𝑥𝑥), a number we will call Q. 
 
Theorem Critical Value     There exists a smallest positive critical 
value of sin(𝑥𝑥), that is, a smallest positive zero of cos(𝑥𝑥). 

Proof. We have already seen that cos0 = 1. Now observe that 

cos 2 = 1 −
22

2!
+

24

4!
−

26

6!
+ ⋯ 
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We now write 

cos 2 = �1 −
22

2!
+

24

4!
−

26

6!
� + 𝑅𝑅3 

           = −
19
45

+ 𝑅𝑅3 

           ≤ −
19
45

+ |𝑅𝑅3| 

The Remainder Theorem for alternating series tells us that 

|𝑅𝑅3| ≤ 𝑎𝑎4 =
28

8!
 

and so 

cos 2 ≤ −
19
45

+
2

315
= −

131
315

 

Since cos0 > 0 and cos2 < 0, by the Intermediate Value Theorem, 
there is at least one real number c ∈ (0,2) with cos c = 0. The 
nonempty set {x | cos x = 0} is the inverse image of the closed point 
set {0} under the continuous function cos x. Therefore the set {x | cos 
x = 0} is closed. It follows that the set 

{x | cos x = 0} ∩ [0, 2] 

is nonempty, closed, bounded, and is therefore compact (Willard 
1970). It must contain its least element which we shall call, 
temporarily, Q.                                                                                       

Definition of Q 

Q = min ({x | cos x = 0} ∩ [0, 2]) 
 

Consequences of the key theorems.–The Pythagorean Identity leads 
directly to the following corollary. 
 

Corollary For all x, 

|sin x| ≤ 1 and |cos x| ≤ 1. 
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Proof: If |sin x| > 1, then cos2 x < 0 and cos x is not a real number. 
Similarly, if |cos x| > 1, then sin x is not a real number. In this study, 
we are restricting our work to real numbers.                                          
 

The next two corollaries follow from the Pythagorean Identity and 
the special properties of Q. 

 
Corollary sin Q = 1 and sin x has an absolute maximum value of 1 at 
x = Q. 
 
Proof: Since cos0 = 1 and cos x is an even function, for x ∈ (−Q, Q), 
we have cos x > 0. Therefore sin x is strictly increasing on (−Q, Q). 
Since 0 < Q we have 0 = sin 0 < sin Q. From the Pythagorean Identity 
we know that 

sin2 Q + cos2 Q = 1 
 
Since cos Q = 0, it must be the case that sin Q = 1. We have already 
observed that 

                                 |sin x| ≤ 1                     

and therefore 1 is an absolute maximum of sin x.                                                
  
Corollary The range of sin x is [−1, 1]. 
 
Proof: Because sin x is an odd function we have sin(−Q) = −sin Q = 
−1 is an absolute minimum. The range [−1, 1] follows from the 
continuity of sin x and the Intermediate Value Theorem.                      
 

Later we will see that the range of cos x is also [−1, 1]. 

Our next two corollaries follow from the Sine Sum Theorem. 

Corollary sin(x − y) = sin x cos y − cos x sin y 
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Proof: Because sin x is an odd function and cos x is even, we have the 
following: 
       sin(x − y) = sin(x + (−y)) 
    = sin x cos(−y) + cos x sin(−y) 
       = sin x cos y − cos x sin y                                 

 
Corollary   sin 2x = 2 sin x cos x 

Proof: 
   sin 2x = sin(x + x) 
    = sin x cos x + cos x sin x 
    = 2 sin x cos x 
                                   
We now consider the cofunction rules that follow from the Sine Sum 
Identity and the properties of Q.  We will use these later to show that 
the sine and cosine functions are periodic. 

Corollary  Cofunction Rule      sin(Q − x) = cos x 
 
Proof: 
   sin(Q − x) = sin Q cos x – cos Q sin x 
    = 1 · cos x − 0 · sin x 
    = cos x 
                                   
Corollary  Cofunction Rule      cos(Q − x) = sin x 
 
Proof: 
   cos(Q − x) = sin(Q − (Q − x)) 
    = sin x 
                                   
In the following corollaries we complete the sum, difference, and 
double angle rules. 

Corollary cos(x + y) = cos x cos y − sin x sin y 
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Proof: 
   cos(x + y) = sin(Q − (x + y))         

   = sin((Q − x) − y) 
                                 = sin(Q − x) cos y − cos(Q − x) sin y 
             = cos x cos y − sin x sin y 

                          
The following corollaries now follow. 

Corollary cos(x − y) = cos x cos y + sin x sin y 

Proof: 
   cos(x − y) = cos(x + (−y)) 
                     = cos x cos(−y) − sin x sin(−y) 

= cos x cos y + sin x sin y 

                          
Corollary cos 2x = 2cos2 x − 1 
 
Proof: 
   cos 2x = cos(x + x) 
    = cos x cos x − sin x sin x 
    = cos2 x − sin2 x 
    = cos2 x − (1 − cos2 x) 
    = 2cos2 x – 1 

                          
We have seen that the three key theorems have led to the familiar 
difference formulas as well as double angle formulas. From these 
follow the other identities such as half-angle and product-to-sum 
rules. In particular, we will later need the identity 
 

                                   
 

Periodicity.–We will need the sine and cosine function values of 
4Q to show periodicity. Here is a sequence of steps to arrive at this 
point. 
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1. sin2Q = 2 sin Q cos Q = 2(1)(0) = 0 
2. cos2Q = sin(Q − 2Q) = sin(−Q) = −sin Q = −1. 
    From this it follows that the range of cos x is [−1, 1]. 
3. sin3Q = sin(Q + 2Q) = sin Q cos 2Q + cos Q sin 2Q = −1 
4. cos3Q = sin(Q − 3Q) = sin(−2Q) = −sin 2Q = 0 
5. sin4Q = 2 sin 2Q cos 2Q = 0 
6. cos4Q = sin(Q − 4Q) = sin(−3Q) = −sin(3Q) = −(−1) = 1 
 
We now have the machinery needed to prove the periodicity of sin x 
and cos x. 
 
Definition A function f (x) is periodic if there is a positive number p 
such that 
     f (x + p) = f (x) 
 
for all x. If there is a smallest positive number p for which this holds, 
then p is called the period of f. 

Theorem Periodicity of Sine The sine function is periodic and its 
period is 4Q. 
 
Proof: We first show that sine is periodic. 
 
  sin(x + 4Q) = sin x cos 4Q + cos x sin 4Q 
   = sin x (1) + cos x (0) 
   = sin x 
 
This shows that sin x is periodic, but does not show that the period is 
4Q. To show that 4Q is the period, assume, to the contrary, that there 
exists a number R such that 0 < 4R < 4Q and for all x, 
 
    sin (x + 4R) = sin x 
 
Observe that 0 < R < Q. For x ∈ (0, Q) we have cos x > 0 because cos 
0 = 1 and Q is the smallest value with cos Q = 0.  We also have sin x 
> 0 since sin0 = 0 and sin is increasing on (0, Q). Now examine sin Q: 
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   sin Q = sin(Q + 4R) 
                         = sin Q cos 4R + cos Q sin 4R 
   = cos 4R 
                             = cos 2(2R) 
   = 2cos2 (2R) − 1 
 
Because sin Q = 1, 
           1 = 2cos2 (2R) – 1 
  1 = cos2 (2R) 
       cos 2R = 1 or cos 2R = −1 
 
 
We now have two cases: 
 
 Case I:  cos 2R = 1. 
 
Then by the double angle identity, 
 
  2 cos2 R − 1 = 1 
  cos2 R = 1 
 
If cos2 R = 1, then by the Pythagorean Identity, sin R = 0, a 
contradiction to the fact that sin R > 0. 
 
 Case II:  cos 2R = −1. 
 
Then 
  
  2cos2 R − 1 = −1 
  cos R = 0 
 

This last statement contradicts the choice of Q as the smallest positive 
number in [0, 2] with cos Q = 0. 

Therefore such a number R does not exist, and the period of sin is 4Q.  
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Corollary Periodicity of Cosine  The cosine function is periodic with 
period 4Q.                                                                                             
 
Proof: We can write cos x as 
  cos x = −sin(x − Q) 
 
Because horizontal translations and vertical rotations about the x-axis 
do not change the period of a function, cos x is periodic with period 
4Q.                                                                                                          
 

Connection to Geometry.–With this result we now show the 
connection between the analytic and geometric approaches to 
trigonometry.   Figure 1 shows the area under the unit circle function 
from x=0 to x=1.    
 
 
     

 
 
Figure 1. The area under the unit circle from x=0 to x=1 is Q/2, showing that π/4=Q/2. 
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Theorem Connection with π       

� �1 − 𝑥𝑥2𝑑𝑑𝑥𝑥 =
𝑄𝑄
2

1

0
 

Proof: Use the substitution 

 x= sin θ 

with the values so that the integral becomes 

 

 

� �1 − 𝑠𝑠𝑠𝑠𝑛𝑛2𝜃𝜃 cos 𝜃𝜃 𝑑𝑑𝜃𝜃 = � 𝑐𝑐𝑐𝑐𝑠𝑠2𝜃𝜃 𝑑𝑑𝜃𝜃
𝑄𝑄

0

𝑄𝑄

0
 

= �
1
2

 (1 + cos 2𝜃𝜃)𝑑𝑑𝜃𝜃
𝑄𝑄

0
 

=
1
2
�𝜃𝜃 +

1
2

sin 2𝜃𝜃�
0

𝑄𝑄

 

=
1
2
��𝑄𝑄 +

1
2

sin 2𝑄𝑄� − �0 +
1
2

sin(2 ∙ 0)�� 

=
1
2
𝑄𝑄 

                                                                                                                
The integral  ∫ √1 − 𝑥𝑥21

0  dx represents the quarter-circle area enclosed 
by the unit circle, the nonnegative x-axis, and the nonnegative y-axis, 
and so we are led to the conclusion that 
 
Q = π/2. 
 

Using what we have previously developed about multiples of Q, 
we have a table restating the values for sine and cosine in terms of π 
instead of Q. 

 

x θ 

0 0 

1 Q 
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x 0 π/2 π 3π/2 2π 

sin x     0 1 0 −1 0 

cos x 1 0 1 0 1 
 

From this follows the usual information about the graphs of the sine 
and cosine: intervals for positive/negative values, intervals for 
increasing/decreasing, local (and absolute) maximums/minimums. 
 
Without geometry, we can find the values of sine and cosine of   𝜋𝜋

4
, 𝜋𝜋
3

,
𝜋𝜋
6
 using only the sum and difference identities. We include the 

development of these values in Appendix A: Trig Functions of Special 
Angles (see https://doi.org/10.32011/txjsci_71_1_Article10.SO1). In 
Appendix B: Connection to Unit Circle Trigonometry 
(https://doi.org/10.32011/txjsci_71_1_Article10.SO2), we present the 
mathematics that connects the sine and cosine functions, defined here 
as power series, to the trig functions defined using the unit circle. 
 

Pythagorean Identity revisited.–We conclude this study with the 
observation that the converse of the Pythagorean Identity also holds. 
 
Theorem If f : R → R is analytic, 𝑓𝑓′(0) = 1,𝑓𝑓(0) = 0, and f satisfies 
the Pythagorean Identity 
 

�𝑓𝑓(𝑥𝑥)�
2

+ �𝑓𝑓′(𝑥𝑥)�
2

= 1 
 

for all x, then f (x) ≡ sin x. 

Proof: Differentiation of both sides gives 

2𝑓𝑓(𝑥𝑥)𝑓𝑓′(𝑥𝑥) + 2𝑓𝑓′(𝑥𝑥)𝑓𝑓′′(𝑥𝑥) = 0 

so that 

2𝑓𝑓′(𝑥𝑥)�𝑓𝑓(𝑥𝑥) + 𝑓𝑓′′(𝑥𝑥)� = 0 
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Since f ’ (0) = 1, and f is analytic, f’ is positive on some open interval 
containing 0. Therefore, on this interval, 
 

𝑓𝑓 (𝑥𝑥)  +  𝑓𝑓′′ (𝑥𝑥)  =  0 
 
and f(x) = sin(x). Moreover, if two analytic functions agree on an open 
interval, then they agree on R.                                                                
 

SUMMARY & CONCLUSIONS 
 

We have developed the theorems and identities of basic 
trigonometry using the definition of the sine function as the solution, 
expressed as a power series, of a certain second order linear 
homogeneous differential equation. The key theorems in this study are 
the Pythagorean Identity, the Sine Sum Identity, and the special value 
Q, which turned out to be π/2. From these the other identities follow. 
The interested reader is referred to Landau, chapter 16, in which the 
sine and cosine functions are developed from a power series 
definition. In a brief note, Appendix III in Hardy uses the definition of 
the inverse tangent function as an integral to lead to the definitions of 
sine, cosine, and their sum laws. 

In a future study we plan to consider a generalization of the sine 
and cosine functions, and show that versions of the Key Theorems 
still hold in these settings. 
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